Generative Adversarial Network with Object Localization for Fashion Trend
Prediction & Style Inspiration

[-Tsun Cheng
HKUST
Clear Water Bay, Kowloon

ichengaalconnect.ust.hk

Abstract

In this work we use Generative Adversarial Networks
(GAN) with Faster R-CNN to create predictive fashion sam-
ples from the data collected from multiple sources of re-
cent high-fashion catwalks. Faster R-CNN is trained with
CUHKs DeepFashion dataset and aims to output whole
body clothing items, consisting of either top (shirt) and bot-
tom (pants/skirt) or a single piece dress. The cropping pro-
cess in Faster R-CNN provides data cleansing (removal of
unsuitable training images, such as an image of a single
handbag) and a part of data preprocessing. This data is
then relayed onto a Deep Convolutional-GAN to train both
the generator and the discriminator. With sufficient amount
of training, the DCGAN model is able to output a set of im-
ages resembling a model walking on a catwalk with newly
proposed patterns as the clothing design as our final prod-
uct.

1. Introduction

In the modern age, the fashion industry always faces a
constantly changing consumer taste in fashion as more fash-
ionistas and teenagers of the younger generation look for
new outfits to replenish their wardrobe and improve their
personal style. This prompts for the need for fashion de-
signers to create up-to-date, trendy designs and patterns to
satisfy the erratic tastes of the consumers. Designers of-
ten take inspirations from various sources to create their
unique works, such as from their own personal life ex-
periences, variation of mix-and-match styles, and creative
works by other designers. However, to keep up with the
ever-changing consumer taste in fashion and style, the pro-
duction of more trendy outfits and designs would be desired.
Fortunately, with the current state-of-the-art deep learning
technologies, realms involving art and creativity can be as-
sisted, if not improved, by advanced models. If technol-
ogy could help designers provide more references and in-

4321

Yang Soo Yoon
HKUST
Clear Water Bay, Kowloon

Yyoon@connect.ust.hk

spiration, why not create efficient models that can ease their
work and provide customers with beautiful and intricate de-
signs that they will undoubtedly love?

This research paper aims to generate new clothing items
following the current trends to serve as inspiration for the
fashion designers and predict the next trendy items in the
fashion industry. This paper will not only help fashion de-
signers but also large fashion brands to generate profits and
continue sustain in their competition. Since large fashion
companies need continuous huge profits to be able to con-
tinue survive in the industry, they need to come up with new
designs that will generate their income. Forecasting fash-
ion items that will gather customers attention in the near
future is difficult. The most direct and useful way to re-
solve this issue is to take existing successful fashion items
currently and merge their patterns and styles to construct
new items. As the items are already proven to be successful
now, the merged fashion will highly likely to be successful
too, therefore helping fashion brands to continue generate
revenue. Our proposed model will take in trendy fashion
images and create new items as a way for effective future
trend prediction.

Our research consists of two parts: performing clothes
detection on an image from fashion runway to locate the
outfit and generating similar clothes based on those fashion
items cropped from the predicted bounding boxes.

For the first task, we will use the DeepFashion dataset
developed by the Chinese University of Hong Kong, which
contains thousands of images of people wearing fashion
with various backgrounds [2]. We will use Faster R-CNN to
train on the DeepFashion dataset to create a model that can
accurately detect clothes within images. After the model is
constructed, we will scrape the fashion catwalks from PIn-
terest by different brands and perform model inference on
them. The outputs will be the same images but with bound-
ing boxes. We will crop the images based on the bounding
boxes containing the fashion item.

The second task will focus on receiving the cropped im-
ages generated from the first task and feeding them to our



custom GAN for generating similar fashion items. The
GAN will be trained on those cropped images. We will
construct our own GAN using Pytorch and tune its hyperpa-
rameters to obtain the best looking generated fashion items
possible.

2. Related Work

Object detection has long been a very popular computer
vision task that involves with distinguishing and classifying
instances of semantic objects of a certain class from im-
ages. Recent approaches involve using R-CNN [2], which
precomputes region of interest using a proposal network and
forwarding each region into a CNN, and Fast R-CNN [9],
which forwards an entire image through a CNN and then
computes the regions of interests, which are lastly passed
for classification.

Building on top of Fast R-CNN, Faster R-CNN [10]
was invented to reduce the inference time mostly caused
by region proposals by attaching a Region Proposal Net-
work to the CNN to predict proposal from features. As
mentioned from its work, the Region Proposal Network is
a fully convolutional network that simultaneously predicts
object bounding boxes and class scores at each position, and
shares full-image convolutional features with the detection
network, therefore enabling nearly cost-free region propos-
als. Our research uses the Faster R-CNN model architecture
to build our clothes detector which is trained end-to-end on
the DeepFashion dataset.

The most recent approach that solves the task of object
detection is Mask R-CNN [4]], which performs instance seg-
mentation and therefore identifies every instance within an
image. Since our object detection outputs are essentially
used as training data for the GAN in the second part of the
research, it is very crucial for the outputs to have consistent
shape and dimension. Using Mask R-CNN and cropping the
predicted mask result in infinite possibilities of shapes and
sizes and will therefore cause unstable training for GAN.
Thus, although Mask R-CNN provides best accuracy for
object detection, it is not used in our research.

Generative Adversarial Networks (GANSs) [3] is a form
of unsupervised learning that have been used widely to gen-
erate photorealistic images based on existing real images. It
has been used for a wide variety of applications, including
generating faces, generating indoor scenes, super-resolution
[6], video generation [1]], text-to-image synthesis, image-to-
image translation[3]], etc.

GANs have also been applied to generating clothing
items. Many existing research papers focus on generating
outfits based on a base image and a text description [12]
[[L1]; however, there is no paper that simply generates high-
quality fashion images based on current trendy fashion im-
ages that come from a clean dataset and preprocessed prop-
erly. Therefore, we decide to focus this paper purely on

4322

generating new fashion items from high-quality dataset of
images.

One of the most successful and notable architectural de-
signs of GAN is Deep Convolutional Generative Adversar-
ial Network (DCGAN) [8]. It mainly composes of convolu-
tion layers without max pooling or fully connected layers.
It uses convolutional stride and transposed convolution for
the downsampling and the upsampling. Here is a list of its
primary architecture [8]:

Replace all max pooling with convolutional stride
Use transposed convolution for upsampling.
Eliminate fully connected layers.

Use Batch normalization except the output layer for
the generator and the input layer of the discriminator.

Use ReLU in the generator except for the output which
uses tanh.

Use LeakyReLU in the discriminator.

As DCGANSs have been proven to give competitive per-
formance with other unsupervised algorithms, we use DC-
GAN as base architecture to build our custom GAN for
fashion generation.

3. Data
3.1. DeepFashion Dataset

As the largest fashion dataset to date, DeepFashion
Dataset consists of around 800k diverse fashion images with
various backgrounds, angles, lighting conditions, sizes, and
qualities['| This dataset consists of four benchmarks specif-
ically used for different purposes, and the one we use for
this research is the Category and Attribute Prediction bench-
mark. This benchmark has 289,222 number of clothing
images and each image is annotated by the coordinates of
bounding box and corresponding clothing type of three cat-
egories: fully body, upper body, lower body. We use this
specific benchmark since there are a lot of images with good
variety sufficient enough for us to use and since it is in-
tended for both retrieval and classification purposes.

The images from this dataset is used as training images
for our object detection task. No preprocessing or filtering
is needed for the dataset since it is helpful that the training
images vary so that the object detection model can better
predict with varying backgrounds and angles in the valida-
tion and testing images.

Uhttp://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html



3.2. Pinterest Dataset

To test the trained object detection model, we need an-
other dataset as testing images. We scraped a total of
10,095 number of fashion images from Pinterest scattered
across various luxury fashion brands. These brands include
Burberry, Chanel, Chloe, Dior, Givenchy, Gucci, Hermes,
Jimmy Choo, Louis Vuitton, Michael Cors, Prada, Ver-
sace, Yves Saint Laurent. The photos gathered are all from
fall and spring 2017, 2018, and 2019 fashion shows. We
scraped images from luxury fashion shows to ensure that
the dataset is recent and high-quality to reflect the modern
fashion trends.

(b) Gucci Spring 2019

(a) Louis Vuitton Spring 2019

Figure 1: Sample Images from Pinterest Dataset

4. Methodology

Our proposed method consists of two parts: the clothes
detector and the GAN. For clothes detector, the DeepFash-
ion dataset [7] will be used to train the Faster R-CNN
model. The Faster R-CNN model is implemented using
Facebooks object detection framework called Detectron EI
After finishing training the Faster R-CNN, images of recent
and popular fashion catwalks are scraped from Pinterest and
served to the trained Faster R-CNN as test images. The
model will output predicted bounding boxes of the cloth-
ing items and which of the three classes the item belong
to: full body, upper body, or lower body. Then, only the
images that include full body items will be retrieved and
further cropped along their predicted bounding boxes. We
only take the full body items since we hope to make the
training of the GAN as stable as possible by only accept-
ing consistent image sizes. As upper body and lower body
items usually have much smaller dimensions than full body
items, they may introduce a lot of noise which may affect
the models performance in generating realistic fashion im-
ages and are therefore discarded.

Zhttps://github.com/facebookresearch/Detectron

4323

For the second stage of the research, the cropped test
images will be inputted to our custom DCGAN as training
data. Our custom framework is implemented in Pytorch EI
After training, we can visualize our new generated clothing
that reflect upon the styles that consumers might like.

The general structure of our network is shown in the fig-

ure below.

5. Generate new clothing

1. Train 3.Crop 4. Input for training

DeepFashion
Datasst
(CUHK)

Faster R-CNN
(Facebook)

Cropped

Images Fashion GAN

2. Test (predict
bounding box)

Pinterest
Dataset

Figure 2: General Overview of Our Network

4.1. Clothes Detection

Detectrmﬂ which is developed by Facebook AI Re-
search, implements state-of-the-art object detection algo-
rithms and is powered by the Caffe2 deep learning frame-
work ﬂ It implements a myriad of algorithms, includ-
ing Mask R-CNN, Faster R-CNN, Fast R-CNN, RetinaNet,
RPN, and R-FCN, and several network architectures, in-
cluding ResNet, Feature Pyramid Networks, and VGG16.

In order to implement Faster R-CNN using Detectron,
we need to first convert the DeepFashion dataset to COCO
styleE] since Detectron supports custom datasets in this for-
mat. COCO style datasets require the annotations to be
stored in a JSON file, which should share the basic fol-
lowing structure for object detection: info, image, license,
annotation, categories. The code for producing the appro-
priate JSON annotation file from the DeepFashion dataset
is provided in our official repositoryﬂ

After converting the dataset to the right format, the hy-
perparameters can now be configured for different experi-
ments and then the model with the corresponding hyperpa-
rameter configuration can be trained. We discuss our exper-
iments and results in the following section.

4.2. DCGAN

Invented by Ian GoodFellow [3], a GAN is typically
made up of two networks: the generator and the discrimi-
nator. The generator focuses on producing fake images that
look very similar to the real images, while the discriminator
focuses on accurately classifying whether images are fake
or real. During training, the purpose of the generator is to

3https://pytorch.org/
“https://github.com/facebookresearch/Detectron
Shttps://caffe2.ai/
Shttp://cocodataset.org/format-data
Thttp://www.github.com/itsuncheng/fashion gan



minimize the likelihood that the discriminator will classify
its outputs as fake and the purpose of the discriminator is to
maximize the probability that it correctly classifies whether
images are real or fake. In other words, the generator and
the discriminator play a two-player minimax game which
can be summarized by the following equation:

mingmaxpV (D, G) = Eqmp,o,o (@) log(D(x))]+
E.p.(z)llog(l — D(G(2)))]

Where D(x) represents probability that an image x is
real, G(z) represents the generated output transformed from
Z, Pdata Tepresents the statistical distribution of the real
data, and p, represents the estimated statistical distribution
of the fake data produced by the generator.

To implement DCGAN, we follow its architectural de-
sign as mentioned in the Introduction section.

(D

5. Experiments for Clothes Detection
5.1. Environment and Settings

1. Hyperparameter Configurations: We trained a to-
tal of three Faster R-CNN models using the pretrained
weights of three different model architectures: MSRAs
original ResNet 50 trained on ImageNet 1k dataset,
MSRAs original ResNet 101 trained on ImageNet 1k
dataset, and ResNeXt-101-32x8d model trained with
Caffe2. The following parameters are used for the
three models we trained:

e ResNet 50: weight decay 0.0001, base learn-
ing rate 0.0025, gamma rate 0.1, max iterations
360,000, steps [0, 240000, 320000]

ResNet 101: weight decay 0.0001, base learn-
ing rate 0.0025, gamma rate 0.1, max iterations
360,000, steps [0, 240000, 320000]

ResNeXt-101-32x8d: weight decay 0.0001, base
learning rate 0.01, gamma rate 0.1, max iterations
90000, steps [0, 60000, 80000]

. Training and Validation As the Category and At-
tribute Prediction benchmark from the DeepFashion
dataset consists of 289,222 number of fashion images,
we take 200,000 images by random for training, and
the rest 89,222 images for validation. This indicates
that around 30.85% of images in the dataset are used
for validation, which suggests an appropriate training-
to-validation ratio.

Training Settings We used our DELL XPS 15 laptop
with a Intel Core i7 CPU, 8 GB of RAM, and a Nvidia
GeForce GTX1050Ti Max-Q GPU with 4GB of GPU
memory to train our detection models.

4324

As mentioned from Detectron’s website, for training,
only horizontal flipping data augmentation is applied,
while for inference, no test-time augmentations were
used [}

The full training time took around 3.5 to 4 days each
for the models.

Benchmark We will use Average Precision (AP) and
Recall as metrics to evaluate the performance of the
Faster R-CNNs quantitatively. AP measures the accu-
racy in an object detection task, while Recall measures
how good the model find the positives ﬂ Their mathe-
matical formulas are defined by:

TP

AP =55 Fp @)
TP
Recall = TP FN TFN 3)

In the equations, T'P represents true positives, F'P
represents false positives, and F'N represents false
negatives. We also use another value called Intersec-
tion over Union (IoU) to determine the acceptance of
error between the ground truth and the prediction of
the bounding boxes. A value of 0.5 IoU means that
if the area of the region of intersection over union be-
tween the ground truth and the prediction is within 0.5,
the prediction is counted as correct.

For COCO datasets, they use average AP for a range
of IoUs with a given step size as the primary challenge
metric []El Also, they compute AP and recall across
small, medium, and large objects. Specifically accord-
ing to COCO, small size objects have area less than
322 pixels, medium size objects have area between 322
and 962 pixels, and large size objects have area larger
than 96 pixels

For our experiments, the higher the AP and recall for a
certain setting, the better a given model generally per-
forms in detecting objects.

5.2. Average Precision and Recall for Average Sizes

From the view of the three specific models we trained on,
ResNeXt-101 has the most complex architecture with more
weights than the two other models, followed by ResNet-101
and then lastly, ResNet-50. It is known that ResNeXt-101
gives the highest bounding box AP, followed by ResNet-101

8https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md

“https://medium.com/@jonathan_hui/map-mean-average-precision-
for-object-detection-45¢121a31173

10nhttp://cocodataset.org/detection-eval

http://cocodataset.org/detection-eval



ResNet-50 ResNet-101

ResNetXt-101

AP, IoU=0.50:0.95, area=all 0.721 0.716 0.667
AP, IoU=0.50, area=all 0.922 0.920 0.894
AP, IoU=0.75, area=all 0.843 0.838 0.787
AP, IoU=0.50:0.95, area=small 0.094 0.087 0.171
AP, IoU=0.50:0.95, area=medium 0.466 0.462 0.402
AP, IoU=0.50:0.95, area=large 0.744 0.739 0.691
Recall, IoU=0.50:0.95, area=all 0.783 0.779 0.745
Recall, IoU=0.50, area=all 0.808 0.804 0.774
Recall, IoU=0.75, area=all 0.808 0.804 0.774
Recall, IoU=0.50:0.95, area=small 0.188 0.182 0.330
Recall, IoU=0.50:0.95, arca=medium 0.679 0.680 0.646
Recall, IoU=0.50:0.95, area=large 0.822 0.818 0.789

Table 1: Clothes Detection Models APs and Recalls

and then ResNet-50 trained under the COCO 2014 train-
ing dataset Using Big Basin servers with § NVIDIA
Tesla P100 GPU accelerators each with 16GB GPU mem-
ory, ResNeXt-101 achieves an AP of 0.413%, ResNet-101
achieves an AP of 0.394%, and ResNet-50 achieves an AP
of 0.367% under a learning rate schedule of lx[Tj However,
this is only under the case where the models are trained fully
for very long long using very powerful machines. Since
we trained using our personal computer with a decent lap-
top GPU, we achieved results different from the baseline
results.

As we can see from the table results, ResNet-50 actually
have higher AP and recall than the other two, followed by
ResNet-101, and finally ResNetXt-101. This surprisingly
differs from the results provided by the baselines. However,
this scenario can be explained by the fact that more com-
plex architectures with more parameters usually take longer
hours to train and longer to converge. Since we trained three
of our models for around the same time on a comparatively
lower-end GPU, ResNetXt-101 may not converge yet, while
ResNet-101 and especially, ResNet-50, may have almost or
already converged. ResNetXt-101 takes longer time to train
than its two other counterparts, and we will likely see im-
prove in performance should it be trained longer.

Due to hardware and time constraints, it is difficult for
us to train longer for ResNetXt-101 to achieve the best re-
sults, but what we achieved is already very decent. For AP
across IoU stepping from 0.5 to 0.95, we achieved 0.721%
for ResNet-50, 0.716% for ResNet-101, and 0.667% for
ResNetXt-101. Although our results are incomparable with
the baseline results because we trained on different datasets,
our results show that we have relatively very high accuracy
for our dataset.

The same occur with recall. For recall across IoU step-
ping from 0.5 to 0.95, we achieved 0.783% for ResNet-
50, 0.779% for ResNet-101, and 0.745% for ResNetXt-101.
These recall values are pretty high considering the amount

2http://cocodataset.org/

of computing power we trained on.

5.3. Average Precision and Recall for Different sized
Objects

For large and medium sizes of certain objects in images,
ResNet-50 also performs the best out of the three models,
followed by ResNet-101, and then ResNetXt-101. The rea-
son may also be the same as the average precision for all
areas, that ResNet-50 takes shorter time to train to achieve
high accuracy results. However, for objects with small
sizes, ResNetXt-101 actually performs significantly better
than its other two counterparts even though all of their APs
are relatively low. ResNetXt-101 achieves an AP of 0.171%
on small sized objects, while the other two models achieved
APs below 0.10%. This shows that ResNetXt-101 focuses
on detecting smaller sized objects even with not a very long
period of training time.

For recall values, the ResNetXt-101 also shows to per-
form better on detecting smaller sized objects. It detects ac-
curately 0.330% for small sized objects, while ResNet-101
achieves 0.182% and ResNet-50 achieves 0.188%.

The reason why the APs and recalls are generally low for
small-sized objects is mostly because of the fact that there
are not a lot of small-sized clothing items in the DeepFash-
ion training dataset. Objects that are classified as small size
may not be found in a lot of the images. Since the objects
are small, the objects may not be easy to classify, thus lead-
ing to low detection accuracy.

Although the AP achieved by all the models are low for
small-sized objects, it is acceptable for this research, since
small-sized objects are usually upper or lower body items.
Full body items are unlikely to be small-sized and are usu-
ally either medium-sized or large-sized. Since we only re-
trieve full body clothing later on to feed to GAN, achieving
high AP on small sizes is not necessary and achieving aver-
age high AP on all sizes is sufficient.

5.4. Testing

The images scraped from Pinterest are used as test im-
ages for the Faster R-CNN models, and the outputs are pre-
dicted bounding boxes and the corresponding classes with
their confidences. Only the clothing items that are classi-
fied as full body items are cropped based upon their bound-
ing boxes. After performing model inference on the test
images, 3,968 images are classified as full body items and

Bhttps://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.nldter passed on to our custom GAN.

4325



(@ (b)

Figure 3: Sample Predicted Bounding Boxes and their
Classes

6. Experiments for DCGAN
6.1. Environment and Settings

1. Hyperparameter Configurations

Tweaking the hyperparameters in DCGAN was quite
experimental in achieving the results. Due to compu-
tational limitations, we have decided to focus mainly
on the input image size and dropout probabilities in
between convolutional layers. We hypothesized that
increasing dropout would prevent overfitting the data
which would lead us to have clearer and more defined
patterns. Existing research and tutorials have also sug-
gested to try dropout for generator as it might improve
the performance of GANS [3]] El

To test our hypothesis, we have trained DCGAN with
6 settings:

e Image size of 64 x 64 without dropout on pro-
cessed dataset (Predicted by Faster R-CNN and
cropped)

e Image size of 128 x 128 without dropout on pro-
cessed dataset

e Image size of 64 x 64 with dropout on processed
dataset

e Image size of 128 x 128 with dropout on pro-
cessed dataset

e Image size of 64 x 64 without dropout on un-
processed dataset (Pinterest dataset which is not
passed to Faster R-CNN and cropped)

e Image size of 128 x 128 without dropout on un-
processed dataset

14https://github.com/soumith/ganhacks

Generat

Notebooks code and results for DCGAN experiments
are provided in our github repoEl

DCGAN Architecture DCGAN is composed of a
generator and discriminator. We decided to experi-
ment with the generator by implementing dropout fea-
tures in between the convolution layers. The original
structure of a generator consists of a convolution layer,
batch normalization layer and a ReLU activation layer,
repeated 4 times until the output image size is reduced
to the preferred dimensions(3 channel rgb, 64 x 64).

or(

(main): Sequential(

: ConvTranspose2d(10®, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)

: BatchNorm2d (512, eps=le-05, momentum=8.1, affine=True, track running stats=True)

: ReLU({inplace)

: ConvTranspose2d(512, 256, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d (256, eps=le-85, momentum=8.1, affine=True, track running stats=True)
ReLU(inplace)

: ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: BatchNorm2d (128, eps=le-85, momentum=68.1, affine=True, track_running stats=True)

: RelU(inplace)

. ConvTranspose2d(128, 64, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

(1@8) : BatchNorm2d(64, eps=le-85, momentum=8.1, affine=True, track running stats=True)

): ReLU(inplace)

(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh()

Figure 4: Architecture without Dropout

To test the effect of dropout on the performance of
GAN:Ss, dropout layers were added to the same network
in between the convolutional layers to introduce ran-
domness that will provide noise in both the training
and testing of the network. The below image shows
the architecture when dropout is applied.

Generator(
(main): Sequential(

(e):
(1):

(2)
(3)

ConvTranspose2d(10@, 512, kernel size=(4, 4), stride=(1, 1), bias=False)
BatchNorm2d(512, eps=le-85, momentum=8.1, affine=True, track running stats=True)
RelU(inplace)
Dropout (p=6.2)
: ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
: BatchNorm2d(256, eps=le-05, momentum=8.1, affine=True, track running stats=True)
: RelU(inplace)
: Dropout (p=8.2)
ConvTranspose2d(256, 128, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True, track_running_stats=True}
): ReLU(inplace)

(11): Dropout(p=0.2)

(12): ConvTranspose2d(128, 64, kernel size=(4, 4), stride=(2, 2), padding=(1, 1}, bias=False)
(13): BatchNorm2d(64, eps=le-85, momentum=8.1, affine=True, track running stats=True)

(14): ReLU(inplace)

y: Dropout(p=8.2)
): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

(17): Dropout(p=0.5)
(18): Tanh()

3.

6.2.
1.

Figure 5: Architecture with Dropout

Training Settings

The DCGAN architectures are trained using the same
laptop described earlier in the object detection task.
Each training of DCGAN typically lasts around 1 day.

Results

Image size of 64 x 64 without dropout on processed
dataset (Predicted by Faster R-CNN and cropped)

Shttp://www.github.com/itsuncheng/fashion_gan

4326



e Loss D: 0.1564, Loss_G: 3.2441, D(x): 0.9530

Generator and Discriminator Loss During Training

30
5
20
"1
5
10
5
o
0 1000 000 200 4o 5000 5000 Figure 9: 64x64 Unprocessed Dataset Generated Results
Figure 6: 64x64 Processed Dataset Diagram
3. Image size of 128 x 128 without dropout on unpro-
cessed dataset
e Loss_D: 0.1592, Loss_G: 4.3941, D(x): 0.9183
Generator and Discriminator Loss During Training
— G
50 D
—— —
40
" 30
g
0
”’ sas
0
Figure 7: 64x64 Processed Dataset Generated Results 0 w0 s G0 w00 100 12000 000 16000

iterations

Figure 10: 128x128 Unprocessed Dataset Diagram

2. Image size of 64 x 64 without dropout on unprocessed
dataset

e Loss_D: 0.3935, Loss_G: 3.7075, D(x): 0.8563

Generator and Discriminator Loss During Training

0 500 1000 1500 2000 2500 3000 3500 4000
iterations

Figure 11: 128x128 Unprocessed Dataset Generated Re-
Figure 8: 64x64 Unprocessed Dataset Diagram sults

4327



6.3. Processed Dataset and Unprocessed Dataset

For models without dropout, the results show that us-
ing our processed dataset, which is cropped using the pre-
vious object detection models, result in better results than
running on an unprocessed and uncleaned dataset scraped
from Pinterest. As shown from the table, the losses of both
the discriminator and the generator from the GAN that run
on processed dataset are lower than its counterpart. The
discriminator for the 64x64 model running the processed
dataset is also shown to be better at figuring out which im-
age is real and fake with an accuracy of 0.9530%, which
exceeds the 64x64 and 128x128 models running on unpro-
cessed dataset. This proves that our object detection task
serves as an important tool to preprocess the images for
GAN training.

6.4. Image Sizes

For the model running on unprocessed dataset, both im-
age sizes of 64x64 and 128x128 yield pretty good training.
However, for the processed dataset trained with image size
128x128, the generator and discriminator failed to train. We
believe this happens since some of the images in the dataset
may be smaller than 128x128 thus causing rescaling and
retransforming to be a major issue.

6.5. Dropout

Generator and Discriminator Less During Training

1000 2000 3000

iterations

4000 5000 6000

Figure 12: 64x64 with Dropout on Processed Dataset Dia-
gram

There have been articles suggesting that dropout for gen-
erator is a good idea for allowing the generator generate
more real data E} However, our experiment results show
that the generator is not creating any data and the discrim-
inator not distinguishing between real and fake data while
training. The generator’s loss is increasing uphill as iter-
ations increase. We find this very surprising and believe
maybe dropout cancels out to much data that generator can-

16https://github.com/soumith/ganhacks

4328

not properly train to generate fake images based on real im-
ages.

6.6. Further Evaluation

As can be seen from the Loss/Iteration graph of success-
ful runs, there are still fluctuations in the learning curve.
This is possibly due to a high learning rate(where the spikes
occur) and the fact that the generator and the discriminator
is constantly competing against each other. An interesting
observation was that adjusting the input image size stag-
gered the initial learning of the network but converged in
the end. Due to its late convergence, it became harder to
guess if we should carry on training or not. Furthermore,
adjusting the input image size made the generator diverge
further during the training in 128 x 128 processed dataset
and not converge at all during our training period. It is rec-
ommended to adjust the kernel size differently according to
the change in input size for future works. Due to DCGAN
being a very newborn technology where training it is an art-
form itself, it was very hard to pinpoint a hyperparameter
that will enhance the training significantly, if at all.

7. Conclusion

The combined network of Faster R-CNN network and
DCGAN successfully generated a set of sample images that
showed items of clothing in which the patterns developed
could be used as a reference for designers in creating fu-
ture works. We have found ways in which we are able to
gather and process cleaner and more accurate data using
Faster R-CNN and then generate images of different sizes
using DCGAN. The output images are pretty decent from
an aesthetics appeal.

Despite the fact that the output fashion images seem eye-
appealing, future improvements can be made. One improve-
ment is if we have more powerful machines, we can train the
object detection models for longer iterations. This might
lead ResNetXt-101 to perform better which will even help
reduce noise for the output images fed to GAN. We can also
try pretraining on more architectures to maximize the use of
existing baselines.

For DCGAN, more can be explored to tune the hyper-
parameters. Although dropout has proven to be ineffective
in DCGAN in our experiments, we can still play with other
hyperparameters in both the discriminator and the genera-
tor, such as adding more convolutional and activation layers,
changing image sizes, the length of latent vector z, the depth
of feature maps carried through the generator and propa-
gated through the discriminator.

References

[1] E. Denton and R. Fergus. Stochastic video generation with a
learned prior. CoRR, abs/1802.07687, 2018.



(2]

(3]

(4]

5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672-2680, 2014.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2961-2969, 2017.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. CoRR,
abs/1611.07004, 2016.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken,
A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic
single image super-resolution using a generative adversarial
network. CoRR, abs/1609.04802, 2016.

Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfash-
ion: Powering robust clothes recognition and retrieval with
rich annotations. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1096-1104,
2016.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.
S.Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems 28, pages 91-99. Curran Associates, Inc., 2015.
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91-99, 2015.

N. Rostamzadeh, S. Hosseini, T. Boquet, W. Stokowiec,
Y. Zhang, C. Jauvin, and C. Pal. Fashion-gen: The
generative fashion dataset and challenge. arXiv preprint
arXiv:1806.08317,2018.

S. Zhu, R. Urtasun, S. Fidler, D. Lin, and C. Change Loy.
Be your own prada: Fashion synthesis with structural coher-
ence. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1680-1688, 2017.

4329



